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In this paper, I analyze the symmetries and degeneracies of electron eigenstates in a commensurate collinear
antiferromagnet. In a magnetic field transverse to the staggered magnetization, a hidden antiunitary symmetry
protects double degeneracy of the Bloch eigenstates at a special set of momenta. In addition to this “Kramers
degeneracy” subset, the manifold of momenta, labeling the doubly degenerate Bloch states in the Brillouin
zone, may also contain an “accidental degeneracy” subset that is not protected by symmetry and that may
change shape under perturbation. These degeneracies give rise to a substantial momentum dependence of the
transverse g-factor in the Zeeman coupling, turning the latter into a spin-orbit interaction. I discuss a number
of materials, where Zeeman spin-orbit coupling is likely to be present, and outline the simplest properties and
experimental consequences of this interaction, that may be relevant to systems from chromium to borocarbides,
cuprates, hexaborides, iron pnictides, as well as organic and heavy fermion conductors.
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I. INTRODUCTION

Antiferromagnetism is widespread in materials with inter-
esting electron properties. Chromium1 and its alloys,2,3 nu-
merous borocarbides,4 electron- and hole-doped cuprates,5,6

iron pnictides,7 and various organic8 and heavy fermion9–11

compounds all have an antiferromagnetic state present in
their phase diagram. The physics of these antiferromagnetic
phases has been a subject of active research.

In this paper, I study the response of electron Bloch eigen-
states in an antiferromagnet to a weak magnetic field. I con-
centrate on the simplest case: a centrosymmetric doubly
commensurate collinear antiferromagnet, shown schemati-
cally in Fig. 1, where the magnetization density at any point
in space is parallel or antiparallel to a single fixed direction n
of the staggered magnetization and changes sign upon primi-
tive translation of the underlying lattice.

Below, I show that, in a magnetic field transverse to the
staggered magnetization, a hidden antiunitary symmetry pro-
tects the Kramers degeneracy of Bloch eigenstates at a spe-
cial set of momenta. This degeneracy gives rise to a peculiar
spin-orbit coupling, whose emergence and basic properties,
along with the degeneracy itself, are the main results of this
work.

In a paramagnet, the double degeneracy of the Bloch
eigenstates is commonly attributed to symmetry under time
reversal �—and, indeed, perturbations that break time-
reversal symmetry �such as ferromagnetism or a magnetic
field� do tend to remove the degeneracy. Yet violation of �
alone does not preclude degeneracy: in a commensurate cen-
trosymmetric Néel antiferromagnet, as in a paramagnet, all
Bloch eigenstates enjoy a Kramers degeneracy12 in spite of
time-reversal symmetry being broken in the former, but not
in the latter.

In an antiferromagnet, the staggered magnetization sets a
special direction n in electron-spin space, making it aniso-
tropic. A magnetic field along n removes the degeneracy of
all Bloch eigenstates, as it does in a paramagnet. By contrast,
in a transverse field, a hidden antiunitary symmetry protects
the Kramers degeneracy of Bloch eigenstates at a special set
of momenta.

Generally, in d dimensions, the manifold of momenta cor-
responding to doubly degenerate Bloch states in a transverse
field is �d−1� dimensional; within a subset of this manifold,
the degeneracy is dictated by symmetry. This is in marked
contrast with what happens in a paramagnet, where an arbi-
trary magnetic field lifts the degeneracy of all Bloch eigen-
states. For brevity, in this paper I often refer to the manifold
of momenta, labeling the degenerate Bloch states in the Bril-
louin zone, as to the “degeneracy manifold.”

As a consequence of the Kramers degeneracy of the spe-
cial Bloch states in a transverse field, the transverse compo-
nent g� of the electron g-tensor vanishes for such states. Not
being identically equal to zero, g� must, therefore, carry a
substantial momentum dependence, and the Zeeman cou-
pling HZSO must take the form

HZSO = − �B�g��H� · �� + g��p��H� · ��� , �1�

where H� = �H ·n�n and H�=H−H� are the longitudinal and
transverse components of the magnetic field with respect to
the unit vector n of the staggered magnetization, �B is the
Bohr magneton, while g� and g��p� are the longitudinal and
transverse components of the g-tensor.

This significant momentum dependence of g��p� turns
the common Zeeman coupling into a kind of spin-orbit inter-
action HZSO �1�, whose appearance and key properties are
the focus of this work. Zeeman spin-orbit coupling may
manifest itself spectacularly in a number of ways, which will
be mentioned below and discussed in detail elsewhere.

The symmetry properties of wave functions in magnetic
crystals have been studied by Dimmock and Wheeler,13 who
pointed out, among other things, that magnetism not only
lifts degeneracies by obviously lowering the symmetry, but
also may introduce new ones. This may happen at the mag-
netic Brillouin-zone �MBZ� boundary under the necessary
condition that the magnetic unit cell be larger than the para-
magnetic one.13

For a Néel antiferromagnet on a lattice of square symme-
try, the response of the electron states to a magnetic field was
studied in Ref. 14 using symmetry arguments and in Ref. 15
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within a weak-coupling model. The present work is a de-
tailed presentation of recent results.16 It revisits Ref. 14, ex-
tends it to an arbitrary crystal symmetry and to a finite as
opposed to infinitesimal magnetic field, and uncovers a rich
interplay between the symmetry of magnetic structure and
that of the underlying crystal lattice. At the same time, the
present work extends Ref. 13 by allowing for an external
magnetic field—to show how, at special momenta, the Kram-
ers degeneracy in an antiferromagnet may persist even in a
transverse magnetic field.

This work treats antiferromagnetic order as static, neglect-
ing both its classical and quantum fluctuations. This excludes
from consideration strongly fluctuating antiferromagnetic
states such as those near a continuous phase transition, be it
a finite-temperature Néel transition or a quantum �T=0� criti-
cal point. At the same time, the single-electron Bloch eigen-
states, considered hereafter, must be well-defined. As in a
normal Fermi-liquid state, this does not rule out strong inter-
action between electrons, but simply requires temperatures
well below the Fermi energy. Finally, to justify the neglect of
quantum fluctuations, the ordered magnetic moment must be
of the order of or greater than the Bohr magneton.

As a consequence, the present theory applies to antiferro-
magnets �i� deep inside a commensurate long-range antifer-
romagnetic state and far enough from any continuous Néel
transition, finite-temperature or quantum, �ii� with an ordered
moment noticeable on the scale of the Bohr magneton, and
�iii� far below both the Néel and the effective Fermi tempera-
tures. All materials mentioned in Sect. IV are meant to be
considered under these conditions.

The paper is organized as follows. Section II opens with a
reminder of how, in spite of broken time-reversal symmetry,
all Bloch eigenstates in a commensurate collinear antiferro-

magnet retain Kramers degeneracy, provided there is an in-
version center.12 Then I show how, even in a transverse mag-
netic field, a hidden symmetry of antiferromagnetic order
may protect the Kramers degeneracy for certain Bloch states.
Section III establishes several properties of the single-
electron spectrum in a weakly coupled antiferromagnet, sub-
ject to a transverse magnetic field.

Section IV contains the analysis of simple examples that
may be relevant to specific materials from chromium to or-
ganic conductors, from borocarbides to underdoped cuprates,
and to various heavy fermion metals. Section V reviews the
findings and examines them in the light of earlier work,
while the Appendices A–D present various technical details.

II. GENERAL ARGUMENTS

It is convenient to begin by describing the crystal host
symmetry in the absence of magnetism, with the average
magnetization density notionally set to zero.13 I refer to this
as to the paramagnetic state symmetry, even though the sym-
metry of the actual paramagnetic state may be different, for
instance, due to a lattice distortion upon transition. Unitary
symmetries of the paramagnetic state form a group, h, which
includes a set of elementary translations Ta by primitive
translation vectors a. Time reversal � being indeed a symme-
try of the paramagnetic state, the full symmetry group g of
the paramagnetic state includes h, and products of � with
each element of h: g=h+�h; put otherwise, h is an invariant
unitary subgroup of g.

Antiferromagnetic order couples to the electron spin � via
the exchange term ��r ·��, where �r is proportional to the
average microscopic magnetization at point r. In keeping
with the arguments of Sec. I, fluctuations of �r are ne-
glected. Being of relativistic origin, spin-orbit couplings of
the crystal lattice to the electron spin and to the magnetiza-
tion density are also neglected. This is a good approximation
in a broad range of problems, at the very least at tempera-
tures above the scale set by the spin-orbit coupling �see Sec.
V for details�. In this “exchange symmetry” approximation,17

magnetization density and electron spin are assigned to a
separate space, independent of the real space of the crystal;
this makes coordinate rotations and other point symmetries
inert with respect to �r and �.

A nonzero �r changes sign under time reversal � and
removes the symmetry under primitive translations Ta, thus
reducing the symmetry with respect to that of paramagnetic
state. In a doubly commensurate collinear antiferromagnet,
�r changes sign upon Ta :�r+a=−�r, while Ta

2 leaves �r
intact: �r+2a=�r. Even though neither � nor Ta remains a
symmetry, their product �Ta does �see Fig. 1�. In a cen-
trosymmetric system, so does �TaI, where I is inversion.
The importance of the combined symmetry �TaI will be-
come clear in Sec. II A.

Together with the uniaxial character ��r at any point r
pointing along or against the single direction n of staggered
magnetization�, these relations define a commensurate collin-
ear Néel antiferromagnet via transformation properties of its
microscopic magnetization density.

FIG. 1. �Color online� Doubly commensurate collinear antifer-
romagnet on a simple rectangular lattice. In the absence of magne-
tism, time reversal � and primitive translations Tx and Ty, shown by
dashed arrows, are symmetry operations. In the antiferromagnetic
state, neither of the three remains a symmetry, but the products �Tx

and �Ty, shown by solid arrows, do, as illustrated by filled spin
arrows. Small dashed rectangle at the center is the Wigner-Seitz cell
boundary in the paramagnetic state, while the shaded hexagon is its
antiferromagnetic counterpart. Notice that neither of the point-
group operations interchanges the two sublattices, hence any point
symmetry of the lattice, including inversion I, remains a symmetry
of the antiferromagnetic state.
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A. Kramers degeneracy in zero field

The combined antiunitary symmetry �TaI gives rise to a
Kramers degeneracy.12 If �p� is a Bloch eigenstate at momen-
tum p, then �TaI�p� is degenerate with �p�. Since � and I
both invert the momentum, both �p� and �TaI�p� carry the
same momentum label p. Formally, this is verified by the
action of any translation Tb that remains a symmetry of the
antiferromagnetic state

Tb�TaI�p� = �TaTbI�p� = �TaIT−b�p�

= �TaIe−ip·b�p� = eip·b�TaI�p� . �2�

At the same time, �p� and �TaI�p� are orthogonal. This fol-
lows from Eq. �A2� as soon as one chooses O=TaI and
���= �p�. As a consequence of the electron carrying spin-1

2 ,
� 2=−1. Recalling that �TaI�2=1 and hence ��TaI�2=−1,
one finds

�p�ITa��p� = − �p�ITa��p� . �3�

Thus, in spite of broken time-reversal symmetry, in a cen-
trosymmetric commensurate Néel antiferromagnet all Bloch
states retain a Kramers degeneracy.

B. Kramers degeneracy in a transverse field

Generally, a magnetic field H lifts this degeneracy. How-
ever, in a transverse field, a hidden antiunitary symmetry
may protect the degeneracy at a special set of points in the
Brillouin zone, as I show below.

In an antiferromagnet, subject to a magnetic field H, the
single-electron Hamiltonian takes the form

H = H0 + ��r · �� − �H · �� , �4�

where the “paramagnetic” part H0 is invariant under inde-
pendent action of Ta and �, and where g�B is set to unity. In
the absence of the field, all Bloch eigenstates of the Hamil-
tonian �4� are doubly degenerate by virtue of Eq. �3�.

Consider the symmetries of the Hamiltonian �4�, involv-
ing a combination of an elementary translation Ta, time re-
versal �, or a spin rotation Um��� around an axis m by an
angle �. These symmetries are listed in Table I; the relative
orientation of �r, H�, and H� is shown in Fig. 2. The trans-
verse field H� breaks the symmetries Un��� and Ta�, but
preserves their combination at �=�, i.e., Un���Ta�. Acting
on an exact Bloch state �p� at momentum p, this combined
antiunitary operator creates a degenerate partner eigenstate
Un���Ta��p�, which is orthogonal to �p� everywhere in the
Brillouin zone unless �p ·a� is an integer multiple of � �in
other words, unless p lies at a paramagnetic Brillouin-zone
boundary�

�p�Un���Ta��p� = e−2i�p·a��p�Un���Ta��p� . �5�

Equation �5� follows from Eq. �A2� for O=Un���Ta and
���= �p� as soon as one observes that �Un���Ta��2=Ta

2

=T2a. In a magnetic field, double translation T2a remains a
symmetry; according to the Bloch theorem, it acts on �p� as
per T2a�p�=e2i�p·a��p�, thus leading to Eq. �5�.

Notice, however, that the eigenstate Un���Ta��p� carries
momentum label −p rather than p. By contrast with the case

of zero field, combining Un���Ta� with inversion I no
longer helps to produce a degenerate partner eigenstate at the
original momentum p: since �, Un���, and TaI all commute
and since �IUn���Ta��2=1, Eq. �A2� for O=IUn���Ta and
���= �p� only confirms that �p�IUn���Ta��p� equals itself.

Thus, for an exact Bloch state �p� at momentum p, the
antiunitary symmetry Un���Ta� produces an orthogonal de-
generate eigenstate Un���Ta��p� at momentum −p. The two
momenta p and −p are different, with one key exception. It
occurs for p at the magnetic Brillouin zone boundary, given
a unitary symmetry U, that transforms −p into a momentum,
equivalent to p up to a reciprocal-lattice vector Q of the
antiferromagnetic state13

− Up = p + Q . �6�

In this case, the eigenstate UUn���Ta��p� carries momentum
label p+Q	p; this eigenstate is degenerate with �p� and
orthogonal to it, thus explicitly demonstrating the Kramers

TABLE I. Symmetries of a collinear doubly commensurate an-
tiferromagnet. The left column is for zero field, central column for
a transverse magnetic field H�, and the right column for a longitu-
dinal field H�. As above, Ta denotes an elementary translation by a.
As shown in Fig. 2, the unit vector n is collinear with �r, the
unit vector h points along H�, and the unit vector l is defined via
l=n�h. For a general orientation of the field �H��0, H��0�, not
shown in this table, Ul���� is the only surviving symmetry, where
Um��� denotes spin rotation by angle � around the m axis.

��r ·�� ��r ·��+ �H� ·�� ��r ·��+ �H� ·��

Un��� Un���
Uh���Ta Uh���Ta

Ul���Ta

Ta� Un���Ta�

Uh���� Uh����
Ul���� Ul���� Ul����

h

n

l = n hx

∆ = − ∆r+a r

r∆ , H

H

FIG. 2. �Color online� Relative orientation of �r, �r+a, H�, and
H�. To see the combined symmetries of Table I, notice that � flips
both �r and H, while Ta leaves H intact, but inverts �r. Unit
vectors n, h, and l=n�h are defined as shown.
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degeneracy at momentum p in a transverse field. This result
is general: combined with any momentum-inverting antiuni-
tary symmetry, Eq. �6� leads to a Kramers degeneracy at
momentum p.13 The simplest illustration, where U is the
unity operator, is given by p=Q /2 and shown in Figs. 5 and
6�a� for two particular cases. These and other examples are
described in Sec. IV. Notice that, at p=Q /2 �with U=1�, the
degeneracy in a transverse field is guaranteed even for a low
crystal symmetry, provided an inversion center. Also notice,
once more, that U, I, and other point symmetries above are
inert with respect to spin as a consequence of the exchange
symmetry approximation.17

The Hamiltonian �4� and the subsequent analysis ignored
the response of the antiferromagnetic order to the transverse
field H�. This, however, does not affect the set of points,
where the Kramers degeneracy in a transverse field is pro-
tected by the antiunitary symmetry UUn���Ta�. Upon appli-
cation of H�, the Néel sublattices tilt toward the field, mak-
ing it convenient to present �r as

�r�H�� = �r
��H�� + �r

� �H�� , �7�

where �r
��H�� points along H� and �r

� �H�� points along n,
as shown in Fig. 3. Since �r+a

� �H��=�r
��H�� and

�r+a
� �H��=−�r

� �H��, the second column of Table I remains
intact upon replacing �r in Hamiltonian �4� by �r�H�� of
Eq. �7�.

If the antiferromagnetic unit cell is a multiple of its para-
magnetic counterpart, the magnetic Brillouin-zone boundary
contains a set of points that do not belong to the paramag-
netic Brillouin zone boundary �for example, see Figs. 5 and
6�. In the paramagnetic state, no two points of this set, sepa-
rated by antiferromagnetic reciprocal-lattice vector Q and
satisfying condition �6�, can be declared equivalent. As a
curious consequence, the magnetic group of such a wave
vector is not a subgroup of its paramagnetic counterpart.13

Hence the degeneracy, if present, does hinge on magnetic
order.

III. CLUES FROM WEAK COUPLING

Additional insight into the locus of states, that remain
degenerate in a transverse magnetic field, is afforded by a
weak-coupling single-electron Hamiltonian in a doubly com-
mensurate collinear antiferromagnet. Let Q be the antiferro-
magnetic ordering wave vector �see the examples below�; �r
creates a matrix element �� ·�� between the Bloch states at
momenta p and p+Q �for simplicity, I neglect its possible
dependence on p�. Sublattice canting in a transverse field is
taken into account in Appendix B. In magnetic field H and at
weak coupling, Hamiltonian �4� takes the form15

H = 
�p − �H · �� �� · ��
�� · �� �p+Q − �H · �� � , �8�

where �p and �p+Q are single-particle energies of H0 in Eq.
�4� at momenta p and p+Q, and the “bare” g-tensor in
�H ·�� is omitted for brevity.

In a purely transverse field H�, this Hamiltonian can be
diagonalized simply by choosing the ẑ axis in spin space
along H� and the x̂ axis along �. As a result, the Hamil-
tonian �8� splits into two decoupled pieces: H1�p ,H�� for
the amplitudes �p ;↑� and �p+Q ;↓� and H2�p ,H�� for the
amplitudes �p ;↓� and �p+Q ;↑�,

H1�2��p,H�� = 
�p � H� 	

	 �p+Q 
 H�

� . �9�

The spectra E1�2��p� of H1�2� are given by

E1�2��p,H�� = �p 
 �	2 + ��p � �H� · ���2, �10�

with the eigenvalue H� of �H� ·�� corresponding to H1,
and the eigenvalue −H� to H2, and with �p	

�p+�p+Q

2 and
�p	

�p−�p+Q

2 . The same spectrum can be obtained by exclud-
ing, say, �p+Q ;� from the eigenvalue equation for Eq. �8�,
but it is important to keep in mind that � in Eq. �10� no
longer describes spin, but rather pseudospin: since �H� ·��
does not commute with the Hamiltonian, the eigenstates of
H1�2� are superpositions of spin-up and spin-down states.

Equation �10� illustrates a number of points. First, the
electron spectrum acquires a gap of size 2	. Second, in the
absence of magnetic field, each eigenstate is indeed doubly
degenerate, in agreement with the arguments, encapsulated
in Eq. �3�. Third, Eq. �10� shows, that the degeneracy persists
in a transverse field �and, therefore, g��p� in Eq. �1� van-
ishes� whenever �p=0. Barring a special situation, this equa-
tion defines a surface in three dimensions, a line in two, and
a set of points in one. This result for the dimensionality of
the manifold of degenerate states hinges solely on the sym-
metry of the antiferromagnetic state and holds beyond weak
coupling, as shown in Appendix C. Furthermore, as shown
above, this manifold must contain all points, satisfying Eq.
�6�: the points, where the degeneracy is enforced by symme-
try. Finally, expansion of Eq. �10� to first order in �H� ·��
yields the expression for g��p� in Eq. �1� within the weak-
coupling model �8�

g��p� =
�p

�	2 + �p
2

. �11�

h
r+a

∆ r

∆ r+a

l = n hx

n

∆ (H )

(H )

∆ r (H )

∆ r (H ) (H )

H

FIG. 3. �Color online� Relative orientation of �r�H�� and
�r+a�H��, tilted by a transverse field H�. The component �r

��H��
along the field is periodic under elementary translation
Ta :�r+a

� �H��=�r
��H��; the component along the zero field �r is

antiperiodic: �r+a
� �H��=−�r

� �H��.

REVAZ RAMAZASHVILI PHYSICAL REVIEW B 79, 184432 �2009�

184432-4



At the end of Sec. II, I showed that tilting of the Néel
sublattices in a transverse field does not affect the set of
points, where the Kramers degeneracy in a transverse field is
protected by the antiunitary symmetry UUn���Ta�. How-
ever, generally, the rest of the degeneracy manifold is not
protected by symmetry and may change shape upon crystal
deformation or under another perturbation. For instance,
while leaving intact the symmetry-protected set of degen-
eracy points, the sublattice canting may change the shape of
the unprotected part of the degeneracy manifold g��p�=0
compared to �p=0. This effect is discussed in Appendix B.

Put otherwise, the degeneracy manifold may be divided
into two parts. The first part is the “Kramers degeneracy”
subset of special momenta, fixed by a conspiracy between
the antiunitary symmetry Un���Ta� and the crystal symme-
try. This “Kramers” subset is insensitive to perturbations that
leave intact the crystal symmetry of the material. The rest is
an “accidental” degeneracy subset, whose geometry, by con-
trast, may vary under perturbations, that do not affect the
crystal symmetry, but only alter the microscopic parameters
of the system. This division of the degeneracy manifold into
a Kramers and an accidental degeneracy subsets is well il-
lustrated by the examples of two-dimensional rectangular
and square-symmetry antiferromagnets in Sec. IV.

A. Spectral symmetries in momentum space

The spectrum of the Hamiltonian �8� enjoys a number of
symmetries. First, inversion symmetry makes the spectrum
even under inversion. At the same time, g��p��H� ·�� must
also be even under inversion, which implies

g��− p� = g��p� . �12�

The antiunitary symmetry Ul���� in the last line of Table I is
another reason for g��p� to be even under inversion, as
Ul���� turns g��p��H� ·�� into g��−p��H� ·��.

Periodicity doubling due to antiferromagnetism manifests
itself more interestingly. The ordering wave vector Q being a
reciprocal lattice vector, any Bloch eigenstate at momentum
p must have a degenerate partner eigenstate at momentum
p+Q. Usually, this implies Q-periodicity of any given
band: ��p�=��p+Q�, which is the case, for instance, in a
longitudinal field H�, where E�p� undergoes the common
Zeeman splitting E�p�→E�p�
H�. In a Néel antiferromag-
net in a transverse field, this is not the case: for a general p,
E1�2��p+Q��E1�2��p�. Instead,

E1�p + Q,H�� = E2�p,H�� , �13�

while both E1�p� and E2�p� of Eq. �10� are invariant under
momentum shift p→p+2Q. These properties are illustrated
in Fig. 4, showing the splitting of a one-dimensional conduc-
tion band in a transverse field.

The reason behind Eq. �13� is that, as long as H��0,
neither H1 nor H2 in Eq. �9� is invariant under the momen-
tum boost p→p+Q in spite of the Hamiltonians �4� and �8�
both having doubled periodicity. Rather,

H1�p + Q,H�� = H2�p,H�� , �14�

which is made explicit by subsequent exchange of the diag-
onal matrix elements and leads to Eq. �13�.

Zeeman splitting corresponds to the difference
E1�p ,H��−E2�p ,H��; hence it changes sign upon momen-
tum shift by Q. At the same time, direct inspection shows
that Hamiltonians H1 and H2 in Eq. �9� turn into one another
upon inversion of H� :H1�p ,−H��=H2�p ,H��. Combining
this with Eq. �14�, one finds that momentum boost by Q
accompanied by inversion of H� is a symmetry of both H1
and H2,

H1�2��p + Q,− H�� = H1�2��p,H�� . �15�

For the transverse Zeeman term g��p��H� ·��, this yields

g��p + Q� = − g��p� . �16�

Combined, Eqs. �12� and �16� lead to

g�Q

2
+ p� = − g�Q

2
− p� . �17�

This implies not only that g��p� must vanish at p= Q
2 , but

also that g�� Q
2 +p� is an odd function of p. Taking into ac-

count the sublattice tilting does not modify any of the con-
clusions of this section �see Appendix B�.

IV. EXAMPLES

In this section, I describe the manifolds of degenerate
states for a number of concrete examples and thus show that
the Zeeman spin-orbit coupling �1� is at work in many ma-
terials of great interest. It gives rise to various interesting
phenomena, some of which are outlined in Sec. V C.

The Kramers degeneracy in a transverse field and the Zee-
man spin-orbit coupling �1� will manifest themselves when-
ever carriers are present at or near the manifold of degenerate
states g��p�=0. In a weakly doped antiferromagnetic insula-
tor, this will happen whenever the relevant band extremum
falls at or near the manifold of degenerate states. In an anti-

(b)(a)

FIG. 4. �Color online� One-dimensional conduction-band split-
ting. �a� Conduction band �“+” sign in front of the square root in
Eq. �10��, split by a transverse field. Here Eq. �13� is illustrated by
the spectrum �10� for a nearest-neighbor hopping �p= t cos p in
Hamiltonian �8�. Notice that, in spite of the period doubling in real
space, neither of the two split spectra has period �; instead, both are
2�-periodic, but map onto each other upon translation by �. Also
notice that the two split subbands intersect at the symmetry-
enforced degeneracy point p= 


�

2 , as they should �see the one-
dimensional example of Sec IV�. �b� The conduction band, split
by a longitudinal field. By contrast with �a�, each split subband is
�-periodic and degeneracy is lifted for all momenta.
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ferromagnetic metal, this occurs when the Fermi surface
crosses this manifold. Hence, for metals, I mention the
Fermi-surface geometry whenever known.

Between these two limiting cases of a weakly doped an-
tiferromagnetic insulator and an antiferromagnetic metal
with a large Fermi surface, the experimental manifestations
of the Zeeman spin-orbit coupling will be quantitatively dif-
ferent. On top of this, certain effects will be sensitive to the
geometry of the degeneracy manifold and its intersection
with the Fermi surface, as well as the orientation of the stag-
gered magnetization with respect to the crystal axes. A de-
tailed discussion of these effects will be presented elsewhere.

When selecting the examples below, the preference was
given to materials, available in high-purity samples, where
de Haas–van Alphen �dHvA� oscillations were observed and
where magnetic structure was unambiguously characterized
by neutron scattering. As explained in Sec. I, the results of
this work apply to materials well inside a long-range antifer-
romagnetic phase and far enough from any critical point,
quantum or classical. For both quantum and thermal fluctua-
tions of antiferromagnetic order to be negligible, the ordered
moment shall be noticeable on the scale of the Bohr magne-
ton, and the sample shall be kept well below both the Néel
and the effective Fermi temperatures.

A. One dimension

In one dimension, the magnetic Brillouin-zone boundary
reduces to two points p= 


�
2a , which in fact coincide up to

the antiferromagnetic wave vector Q= �
a , that is also a

reciprocal-lattice vector of the antiferromagnetic state �see
Fig. 5�. In terms of the general condition �6�, this is the
simplest case: U=1.

As a result, at p= 

�
2a , the two exact Bloch states in a

transverse field, �p� and �TaUn����p�, correspond to the
same momentum p and are degenerate by virtue of
�TaUn��� being a symmetry. Equation �5� guarantees their
orthogonality, thus protecting the Kramers degeneracy at the
momentum p= 


�
2a against a transverse magnetic field.

B. Two dimensions, rectangular and square
symmetries

Now consider a two-dimensional antiferromagnet on a
lattice of rectangular or square symmetry with the ordering
wave vector Q= �� ,��. In a transverse magnetic field, the

degeneracy persists on a line in the Brillouin zone by virtue
of Eq. �10�. I will show that, in the rectangular case, the
degeneracy line must contain the point � at the center of the
MBZ boundary �i.e., the star of p=Q /2�, shown in Fig. 6�a�.
In the square-symmetry case, the degeneracy persists at the
entire MBZ boundary �Fig. 6�b��. The MBZ in Fig. 6 is
the reciprocal-space counterpart of the Wigner-Seitz cell of
the magnetic state �Fig. 1�, and the ordering wave vector
Q= �� ,�� connects points X and Y in Figs. 6�a� and 6�b�.

Consider a Bloch state �p� at momentum p in a transverse
field. As discussed in Sec. II, the eigenstate �TaUn����p� at
momentum −p is degenerate with �p� and, according to Eq.
�5�, must be orthogonal to it unless �p ·a� is an integer mul-
tiple of �—put otherwise, unless p belongs to the paramag-
netic Brillouin-zone boundary. At points �, X, and Y, mo-
menta p and −p coincide up to a reciprocal-lattice vector of
the antiferromagnetic state. However, at points X and Y �as
well as at the entire vertical segment of the MBZ boundary
in Fig. 6�a��, �p ·a� is an integer multiple of �; hence �p� and
�TaUn����p� are not obliged to be orthogonal there as per
Eq. �5�. Thus, � is the only point at the MBZ boundary,
where the two degenerate states �p� and �TaUn����p� are
orthogonal and correspond to the same momentum. Dashed
arrows in Fig. 6�a� show that, for a generic point p� at the
MBZ boundary, no symmetry operation relates −p� to a vec-
tor, equivalent to p�. Therefore, it is only at point � that the
symmetry protects the Kramers degeneracy against a trans-
verse magnetic field. As in the one-dimensional example of
Sec. IV A, in terms of Eq. �6� this corresponds to the sim-
plest case of U=1.

This can be illustrated by a nearest-neighbor hopping
spectrum

FIG. 5. �Color online� The paramagnetic �p= 

�

a � and the an-
tiferromagnetic �p= 


�

2a � Brillouin zone boundaries of a one-
dimensional Néel antiferromagnet. In the antiferromagnetic state,
the two points p= 


�

2a are identical up to the reciprocal-lattice
vector Q= �

a of the antiferromagnetic state. At these two points, the
antiunitary symmetry Un���Ta� protects the Kramers degeneracy
against a transverse magnetic field.

1
2

2

Σ Σ

X X

(a) (b)

Γ

Y MM
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p

p

−p

−p'p'

p

−p

Γ

Y

FIG. 6. �Color online� Geometry of the problem. �a� The Bril-
louin zone for a simple rectangular lattice �the rectangle� and its
antiferromagnetic counterpart �MBZ, shaded hexagon�. Thick �red�
curve, passing through point �, shows a typical degeneracy line
g��p�=0. At the MBZ boundary, only the momentum p at point �
is equivalent to −p up to a reciprocal-lattice vector of the antifer-
romagnetic state; for a generic p�, shown by the dashed arrow, this
is not true. �b� The Brillouin zone of a simple square lattice and its
antiferromagnetic counterpart �shaded diagonal square�. The degen-
eracy line must contain the entire MBZ boundary, shown in red.
The point � is the Brillouin-zone center, and points X and Y lie at
the centers of the paramagnetic Brillouin-zone edges. The point �
lies at the center of the MBZ boundary.
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�p = t�cos px + � cos py� �18�

in the weak-coupling example of Sec. III: for the rectangular
symmetry ���1�, the spectrum �10� in a transverse field
remains degenerate on a thick �red� line as sketched in Fig.
6�a�. Upon variation of ��1, the line changes its shape, but
remains pinned at the star of the wave vector p=Q /2 �i.e., at
the point �� in Fig. 6�a�. In terms of the Sec. III, the star of
p=Q /2 is the Kramers subset of the degeneracy manifold,
while the rest of the degeneracy line in Fig. 6�a� is the acci-
dental degeneracy subset.

Promotion from the rectangular symmetry ���1� to that
of a square ��=1� brings along invariance under reflections
1,2 in either of the two diagonal axes 1 and 2, passing
through point � in Fig. 6�b�. As a result, the eigenstate
1�TaUn����p� at momentum 2p �Fig. 6�b�� is also degen-
erate with �p� and orthogonal to it, as one can show analo-
gously to the examples above. In terms of the general con-
dition �6�, this means U=1,2.

A momentum p at the MBZ boundary in Fig. 6�b� differs
from 2p by a reciprocal-lattice vector; thus the two mo-
menta coincide in the nomenclature of the antiferromagnetic
Brillouin zone. Hence, for a square-symmetry lattice in a
transverse field, the degeneracy is of a Kramers �i.e.,
symmetry-protected� nature at the entire MBZ boundary, as
shown in Fig. 6�b�. In this case, barring a particularly patho-
logical band structure, the degeneracy manifold is exhausted
by its Kramers subset.

In accordance with the symmetry arguments above, for
the toy nearest-neighbor hopping spectrum �18� at the
square-symmetry point �=1, the degeneracy line of Eq. �10�
coincides with the MBZ boundary, as shown in Fig. 6�b�. By
contrast, for rectangular symmetry, it is Eq. �10� that restricts
the degeneracy in a transverse field to a line in momentum
space, and it is the symmetry that pins this line at point � at
the middle of the MBZ boundary, as shown in Fig. 6�a�.

Now, g��p� can be expanded in a vicinity of the degen-
eracy line g��p�=0. With the exception of higher-symmetry
points, such as point X in Fig. 6�b�, the leading term of the
expansion is linear in momentum deviation �p from the de-
generacy line

g��p� �
�p · �p

�
, �19�

where �p /� is the momentum gradient of g��p� at point p
on the degeneracy line. As mentioned in Sec. III A, inversion
symmetry makes g��p� even under inversion. Therefore, �p
changes sign upon inversion, which is consistent with Eqs.
�13� and �16� that require g��p� to change sign upon mo-
mentum shift by Q.

As shown in Sec. III A, g��p� is an odd function of the
deviation �p from the point � �the star of p=Q /2� in Figs.
6�a� and 6�b�. Therefore, expansion of g��p� around the
point � cannot contain an even power of �p.

C. Chromium

This section is devoted to commensurate antiferromag-
netism in chromium—the simplest of magnetic orders, oc-

curring in this textbook spin-density wave metal. Chromium
crystallizes into a bcc lattice and undergoes various magnetic
and structural transitions upon variation of temperature, pres-
sure, or alloying.1–3

Below the Néel temperature TN of about 311 K at ambient
pressure, chromium develops weakly incommensurate anti-
ferromagnetism with an ordered moment of about 0.5�B per
atom at 4.2 K. However, strain—or doping with some
0.1–0.3 % of a transition metal �such as Mn, Re, Rh, Ru, Ir,
Os, or Pt �Ref. 2��—eliminates incommensurability in favor
of commensurate order with wave vector �001�, shown in
Fig. 7. Commensurate order has also been observed and
much studied in thin films of chromium, often with an en-
hanced Néel temperature and ordered moment.18 This paper
neglects fluctuations of magnetic order and, conveniently, the
high Néel temperature of chromium facilitates experimental
access to T�TN, where thermal fluctuations are suppressed.

The paramagnetic and the antiferromagnetic Brillouin
zones for bulk commensurate antiferromagnetic chromium
are shown in Fig. 8�a�. An arbitrary momentum at the MBZ
boundary becomes equivalent to its opposite upon an appro-
priate spatial rotation by �. Similarly to the two-dimensional
square-symmetry example above, this equivalence is up
to a reciprocal-lattice vector of the antiferromagnetic state.
Hence, in a transverse magnetic field, the Kramers degen-
eracy survives at the entire magnetic Brillouin zone bound-
ary in Fig. 8�a�.

The disappearance of g��p� affects the electrons at two
different sheets of the Fermi surface, sketched in Fig. 8�b�:
those at the nearly spherical electron parts, centered at points
X in the middle of each MBZ face, and those at the hole
ellipsoids, centered at points N in the middle of each MBZ
edge. For the former, the leading term of the expansion is
linear in the momentum deviation �p� from the flat face of
the MBZ boundary. For the latter, the leading term of the
expansion is quadratic near each MBZ edge, since g��p�
vanishes at each of the two intersecting faces of the MBZ
boundary.

D. CeIn3, UIn3, UGa3,…

A number of cerium and uranium binary intermetallics of
simple-cubic Cu3Au structure, such as CeIn3, CeTl3, UIn3,

Cr

FIG. 7. �Color online� Schematic drawing of the commensurate
magnetic structure of antiferromagnetic chromium.
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UGa3, UTl3, and UPb3, turn antiferromagnetic at low tem-
peratures. High-purity samples of CeIn3, UIn3, and UGa3
have made it possible to characterize the magnetic order and
electron properties of these materials rather comprehen-
sively. Some of the basic properties of the samples are shown
in Table II.

At low temperature, all three develop a type-II antiferro-
magnetic structure with wave vector Q= � 1

2
1
2

1
2 �, shown in

Fig. 9�a� for CeIn3. The materials remain normal metals
down to the lowest temperatures probed, with the Sommer-
feld coefficient substantially enhanced by comparison to that
of a simple metal �see the fourth column of Table II versus
about 0.65 mJ /K2 mol for Ag�.

Of the three materials, CeIn3 has been scrutinized the
most. Its early studies were driven by interest in valence29

and magnetic19 fluctuations, in the nature of its magnetic
order,19 in large mass enhancement30 and related questions.
Subsequent research focused on the reduction of TN under
pressure and on superconductivity, discovered near the
critical pressure pc, where the Néel temperature is about
to vanish—as well as on marked departure from Landau

Fermi-liquid behavior, found in the normal state near
pc.

22,31,32 The most recent work included de Haas–van Al-
phen oscillation measurements,21,33 electron-positron annihi-
lation experiments,34 and interpretation of the former.35

According to Fig. 9�b�, the magnetic Brillouin zone of
the three metals enjoys full cubic symmetry. Its square
faces belong to the paramagnetic Brillouin-zone boundary
�p ·a�= 
�, where Eq. �5� does not enforce degeneracy;
however, g��p� does vanish at the hexagonal MBZ faces,
marked by darker shading in Fig. 9�b�.

According to de Haas–van Alphen measurements21,36 and
to calculations,37 one sheet of the Fermi surface of CeIn3 is
nearly spherical and has a radius of about �

a

�3
2 , where a is the

lattice constant. Hence this sheet comes close to the point L
in Fig. 9�b�, which is the very same distance �

a

�3
2 away from

the Brillouin-zone center. Disappearance of g��p� necessar-
ily affects the dynamics of an electron on this sheet in a
transverse field.

Near a generic point at an MBZ face, far from its edges,
leading terms of the expansion of g��p� are linear in trans-
verse deviation of momentum from the MBZ face as per Eq.
�19�, with �p normal to the MBZ boundary. Near the edges,
joining the neighboring hexagonal faces in Fig. 9�b�—for
instance, near the points � and W—the leading terms be-
come quadratic.

E. Uranium nitride

Uranium nitride �UN� presents another example of inter-
est. This heavy fermion metal has a face-centered cubic lat-

(b)(a)

FIG. 8. �Color online� The Brillouin zone and the Fermi surface
of commensurate antiferromagnetic chromium. �a� Dashed lines
show the paramagnetic Brillouin-zone boundary. The solid cube
inside it is the MBZ, with high-symmetry points indicated. In the
antiferromagnetic state, the point H is equivalent to the point � at
the center of the Brillouin zone �not shown�. �b� The Fermi-surface
sketch of paramagnetic chromium. As in �a�, dashed lines show the
paramagnetic Brillouin-zone boundary and the solid cube inside it
is the MBZ. The nearly octahedral hole Fermi surface is centered at
the point H and nearly spherical electron “balls” are located at face
centers X of the MBZ boundary. Together with the nearly octahedral
electron surface, centered at the point � �not shown�, these electron
balls form the electron ”jack.” A set of hole ellipsoids is centered at
points N in the middle of the magnetic Brillouin-zone edges.

TABLE II. Simple properties of some of the studied samples of CeIn3, UGa3, and UIn3: the Néel
temperature TN, the ordered magnetic moment M, the Sommerfeld coefficient �, the residual resistivity �0,
and the residual resistivity ratio ��300 K� /�0.

Material
TN

�K�
M

��B�
�

�mJ /K2 mol�
�0

��� cm� ��300 K�
�0

CeIn3 10.1 0.5/Ce19 13020 0.520 3520

0.621 10022

UGa3 6423 0.75/U23 5224–26 1.226 3825

8126

UIn3 88 1/U27 5024 0.6628 13028

Ce

(b)(a)

FIG. 9. �Color online� Geometry of CeIn3 in real and in recip-
rocal space. �a� Cubic unit cell of CeIn3, showing Ce atoms and
their magnetic moments. Indium atoms �not shown� are positioned
at the face centers of the unit cell. �b� Cubic Brillouin zone of
paramagnetic CeIn3 and, inside, its antiferromagnetic counterpart.
Darker shading marks the degeneracy surface.
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tice of NaCl type, shown in Fig. 10�a�. Below 53 K, it de-
velops type-I antiferromagnetic order, with ordered moment
of about 0.75�B per uranium atom,38 and Sommerfeld coef-
ficient of 50 mJ /K2 mol.39 The Néel temperature of UN
drops under pressure, vanishing at about 3.5 GPa. Recent
experiments39 studied the low-temperature resistivity near
the critical pressure on samples with residual resistivity
�0 of about 2.3 �� cm and the residual resistivity ratio
��300 K� /�0 of the order of 102.

The real-space sketch of magnetic structure of UN is
shown in Fig. 10 together with its paramagnetic and antifer-
romagnetic Brillouin-zone boundaries. The MBZ has full te-
tragonal symmetry and, in a transverse field, all the states at
its boundary retain Kramers degeneracy. The leading terms
in the expansion of g��p� are linear near the MBZ faces,
quadratic near the edges, and cubic near the vertices.

F. CePd2Si2 and CeRh2Si2

The heavy fermion metal CePd2Si2 has a body-centered
tetragonal structure of ThCr2Si2 type, shown in Fig. 11�a�. It
is isostructural to CeCu2Si2—the first discovered heavy fer-
mion superconductor40—and CeCu2Ge2, an incommensurate
antiferromagnet41 that becomes superconducting above 70
kbar in a pressure cell.42

Below about 10 K, CePd2Si2 orders antiferromagnetically
as shown in Fig. 11�a�, with wave vector Q= � 1

2
1
20�, and a

low-temperature ordered moment of about 0.7�B per Ce
atom. Its Sommerfeld coefficient is enhanced to about
100 mJ /K2 mol. Samples of the present generation show re-
sidual resistivity in the �� cm range.22 Under hydrostatic
pressure of 26 kbar, the Néel temperature drops to under 1 K
and, in a pressure window of 
5 kbar around this value,
superconductivity appears, with a maximum transition tem-
perature of about 0.4 K.43 Curiously enough, the normal-
state resistivity near this pressure follows a temperature de-
pendence that does not fit the ��T�=�0+AT2 temperature
dependence of the Landau Fermi-liquid theory, but instead
behaves as ��T��T1.2 over more than a decade in tempera-
ture between about 1 and 40 K.43

The unit cell of CePd2Si2 and its paramagnetic and anti-
ferromagnetic Brillouin-zone boundaries are shown in Fig.
11. By symmetry, the degeneracy manifold in a transverse
field includes the two hexagonal faces of the MBZ boundary,
one of which is shown by darker shading in Fig. 11�b�,
and the four one-dimensional segments, two of which are
shown in black. Along these segments, which are a one-
dimensional analog of the point � in Fig. 6�a�, another sheet
of the degeneracy surface may cross the side faces of the
MBZ. According to de Haas–van Alphen experiments,44 sev-
eral Fermi-surface sheets cross the degeneracy surface. The
leading term in the expansion of g��p� around the hexagonal
MBZ faces is linear.

CeRh2Si2 is an isostructural relative of CePd2Si2, with
a modestly enhanced Sommerfeld coefficient of about
23 mJ /K2 mol. Between TN1�36 K and TN2�25 K, it de-
velops Néel order with Q= � 1

2
1
20�.45,46 Magnetic structure be-

low TN2 has not yet been established unambiguously.45,46

Both TN1 and TN2 drop under pressure47 and, in an extended
pressure window above 5 kbar, CeRh2Si2 becomes supercon-
ducting at a Tc with a maximum of about 0.5 K.48 Antiferro-
magnetic structure of CeRh2Si2 between TN1 and TN2 coin-
cides with that of CePd2Si2, as does the degeneracy surface
in Fig. 11�b�. According to Ref. 49, at least one sheet of the
Fermi surface of CeRh2Si2 crosses the degeneracy surface or
comes close to it.

G. Neodymium hexaboride

Rare earth hexaborides RB6 are an interesting family,
whose members show diverse electron and magnetic proper-
ties. Of the �relatively� simple ones, LaB6 is a diamagnetic
metal and SmB6 is a mixed-valence semiconductor. Of the
ordered materials, EuB6 is a ferromagnetic semimetal and
CeB6 is a heavy fermion metal with at least two ordered
phases, whose nature remains to be elucidated after nearly 40
years of research.

Three members of the family, NdB6, GdB6, and PrB6, are
antiferromagnetic at low temperature. In PrB6 �Ref. 50� and
in GdB6 �Refs. 51 and 52� alike, two different low-
temperature antiferromagnetic states have been found.

Neodymium hexaboride NdB6 presents a simpler picture:
below about 8 K, it is a collinear type-I antiferromagnet with
ordering vector Q= �001

2 � and an ordered moment of about

U

N

(b)(a)

FIG. 10. �Color online� Geometry of UN in real and in recipro-
cal spaces. �a� Fcc cubic unit cell of UN, showing U atoms and their
magnetic moment orientation. Nitrogen atoms are shown by open
circles. �b� Dashed lines define the Brillouin-zone boundary of para-
magnetic UN; the square prism inside it is the antiferromagnetic
Brillouin zone. Its entire boundary defines the degeneracy surface
g��p�=0.

(b)(a)

Ce

FIG. 11. �Color online� Geometry of CePd2Si2 in real and in
reciprocal space. �a� Tetragonal unit cell of CePd2Si2 showing Ce
atoms and the orientation of their magnetic moments. A full sketch,
showing Pd and Si atoms, is given in Ref. 45. �b� The Brillouin-
zone boundary of paramagnetic CePd2Si2 is shown by dashed lines.
The shaded hexagonal prism is its antiferromagnetic counterpart.
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1.74�B;53 antiferromagnetism doubles its cubic unit cell in
the �0 0 1� direction, as shown in Fig. 12�a�. Thus the cubic
magnetic Brillouin zone reduces by half in the �0 0 1� direc-
tion, while keeping its other two dimensions intact, as shown
in Fig. 12�b�.

In a transverse field, the Kramers degeneracy is protected
at the two faces of the MBZ boundary, one of which is
shown by darker shading in Fig. 12�b�. According to de
Haas–van Alphen measurements54,55 and to calculations,56 at
least one sheet of the Fermi surface crosses the degeneracy
surface. Recently studied samples had residual resistivities
well below �� cm and residual resistivity ratios of over a
100.54,57

H. Other materials of interest

This section contains a brief discussion of other antiferro-
magnets, where symmetry may protect the degeneracy of
special electron states against transverse magnetic field, giv-
ing rise to Zeeman spin-orbit coupling �1�.

1. Cuprate superconductors

Electron-doped cuprates such as Nd2−xCexCuO4
� de-
velop commensurate antiferromagnetic order in a wide range
of doping,58 albeit with a modest staggered moment.59 For
such materials, Fig. 6�b� describes the paramagnetic and an-
tiferromagnetic Brillouin-zone boundaries. Angle-resolved
photoemission experiments60 on Nd2−xCexCuO4
� have
found carriers near the MBZ boundary. In a transverse mag-
netic field, these carriers are subject to Zeeman spin-orbit
coupling �1�, provided antiferromagnetism in the sample is
developed well enough.

Recent observation61 of magnetic oscillations in
YBa2Cu3O6.5 testifies to great progress in the sample quality
of cuprates. The fact that this and other underdoped cuprates
are, at the very least, close to commensurate antiferromag-
netism makes them an interesting opportunity to examine the
effects of Zeeman spin-orbit coupling.

2. Borocarbides

Borocarbides RT2B2C with R=Sc,Y,La,Th,Dy,Ho,Er,
Tm, or Lu and T=Ni,Ru,Pd, or Pt have been a subject of

active research, driven by interest in interplay between anti-
ferromagnetism and superconductivity.4 At low temperatures,
commensurate antiferromagnetism develops in a number of
borocarbides �for instance, in RNi2B2C with R=Pr,Dy, or
Ho�, often with a large staggered moment ��8.5�B for Dy
and Ho�.4 Zeeman spin-orbit coupling �1� is active whenever
a sheet of the Fermi surface crosses the degeneracy manifold,
and successful growth of high-quality single crystals62 makes
these materials an interesting case to study.

3. Organic conductors

Organic conductors are an immense and ever growing
class of materials, that show virtually all known types of
electron states, found in condensed-matter physics.8 Antifer-
romagnetism appears in several families of organic conduc-
tors, and manifestations of Zeeman spin-orbit coupling �1�
are likely to be found in some of them.

Unfortunately, so far nearly all of the information on mag-
netic structure of organic antiferromagnets has been coming
from indirect probes such as magnetic susceptibility
measurements63,64 and resonance spectroscopies.65–67 Neu-
tron diffraction studies are hampered by a typically
small ordered moment and by the difficulties of growing
large enough single-crystalline samples. At the moment of
writing, I am aware of only a single cycle of neutron-
scattering experiments68–70 on an organic conductor. More-
over, in families such as �TMTSF�2 Bechgaard salts8 and
�-�BEDT-TTF�2X salts,71,72 antiferromagnetic states are in-
sulating and their controlled doping remains a challenge.73

With this word of caution, a number of organic
conductors may deserve attention. Semimetallic Bechgaard
salt �TMTSF�2NO3,74 developing a spin-density wave
state below about 9 K, may be one interesting case. Recent-
ly synthesized ethylenedioxytetrathiafulvalenoquinone-1,3-
diselenolemethide �EDO-TTFVODS�, that appears to turn
antiferromagnetic below about 4.5 K and remains normal
down to the lowest studied temperature of 0.45 K,75 may be
another. Finally, recent studies76–78 of �Au�tmdt�2�, where
tmdt denotes trimethylenetetrathiafulvalenedithiolate, draw
attention to this organic conductor. Albeit the material is not
yet fully characterized and its large single crystals remain
difficult to grow, it appears to have a Néel temperature of
about 110 K,77,78 which is anomalously high for an organic
material—and shows normal conduction down to at least 10
K.

4. Heavy fermion materials

Several heavy fermion antiferromagnets were reviewed in
detail above. A number of other interesting examples may be
found in Ref. 10.

5. Gadolinium antiferromagnets

Gadolinium antiferromagnets �see Refs. 79 and 80 and
Table 1 in Ref. 81� offer two important advantages for an
experimental study of the Zeeman spin-orbit coupling. First,
their often elevated Néel temperature TN �such as 134 K for
GdAg or 150 K for GdCu� facilitates experimental access to
temperatures well below TN, where thermal fluctuations of

Nd

B

(b)(a)

FIG. 12. �Color online� Neodymium hexaboride. �a� Crystalline
and magnetic structures of NdB6: a CsCl structure with B octahedra
replacing Cl atoms and Nd in place of Cs. The arrows show mag-
netic moments of neodymium atoms. �b� Dashed lines show the
cubic Brillouin zone of paramagnetic NdB6. The shaded square
prism inside it is the tetragonal Brillouin-zone boundary in the an-
tiferromagnetic state. Its darker face denotes the degeneracy plane.
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antiferromagnetic order are frozen out. Second, large ordered
moment of these materials �about 7.5�B for GdAg and about
7.2�B for GdCu2Si2� quenches quantum fluctuations. There-
fore, gadolinium antiferromagnets fit well into the present
framework with its neglect of both quantum and classical
fluctuations—and shall be convenient for a study of various
effects of the Zeeman spin-orbit coupling.

6. Iron pnictides

Iron pnictides have been attracting immense attention82

due to appearance of commensurate antiferromagnetism7 and
high-temperature superconductivity83 in this copper-free
family of materials. Combination of commensurate anti-
ferromagnetism7 with essentially metallic normal-state con-
duction83,84 not only contrasts iron pnictides with the cu-
prates �that are believed to be Mott insulators�, but also
makes the former materials likely to manifest a substantial
momentum dependence of the g-tensor.

V. DISCUSSION

A. Effects of the intrinsic spin-orbit coupling

The arguments above appealed to the exchange symmetry
approximation:17 the point symmetry operations of the elec-
tron Hamiltonian in an antiferromagnet were considered inert
with respect to spin, and the intrinsic relativistic spin-orbit
coupling, that appears in the absence of an external magnetic
field, was thus neglected. I will now examine the effects it
may have.

First, this spin-orbit interaction generates magnetic aniso-
tropy that creates a preferential orientation of the staggered
magnetization n with respect to the crystal axes. In an ex-
periment, this allows one to vary the magnetic field orienta-
tion with respect to n as long as the field remains below the
reorientation threshold.

At the same time, the spin-orbit coupling may eliminate
those spatial symmetries that rotate the magnetization den-
sity with respect to the lattice. For instance, certain spin ro-
tations and spatial transformations, that were independent
symmetries within the exchange symmetry approximation,
may survive only when combined. I will now illustrate this
by two examples of Sec. IV.

A simple case of the spin-orbit coupling affecting the
Kramers degeneracy manifold in a transverse field is given
by a two-dimensional antiferromagnet on a square-symmetry
lattice as in Fig. 6�b�. Here, the Kramers degeneracy at the
antiferromagnetic Brillouin-zone boundary relies, every-
where except for points �, on the symmetry with respect to
reflections in diagonal planes 1 and 2. If either of these re-
flections changes the orientation of �r with respect to the
crystal axes, the spin-orbit coupling may lift the degeneracy
at a relevant part of the magnetic Brillouin-zone boundary,
except for points �. However, if the magnetization density
points along one of these diagonal axes, the degeneracy sur-
vives at the two faces of the MBZ boundary that are normal
to this axis.

In the case of commensurate order in chromium, consider
a single-domain sample with magnetic structure shown in

Fig. 7. For a Bloch state �p� with a momentum p at one of
the two horizontal faces of the magnetic Brillouin zone in
Fig. 8�a�, the degenerate partner state �TaUn����p� has mo-
mentum −p at the other horizontal face of the MBZ. The
coordinate rotation by � around the vertical symmetry axis,
passing through the center � of the Brillouin zone, trans-
forms the momentum p into p+Q, equivalent to p up to the
reciprocal-lattice vector Q of the antiferromagnetic state.

By contrast, for a momentum p at one of the vertical faces
of the MBZ, a coordinate rotation by � around a horizontal
axis is required. Such a rotation inverts �r once the latter is
attached to the crystal axes. Thus spin-orbit coupling tends to
lift the degeneracy at the vertical faces of the MBZ, leaving
it intact at the two horizontal faces. The other examples of
Sec. IV can be analyzed similarly. Finally, those spin-orbit
coupling terms that act directly on the electron spin and tend
to lift the double degeneracy of Bloch eigenstates even in the
absence of magnetic field were neglected here altogether.

B. Relation to earlier work

When symmetries of a system involve time reversal—
alone or in combination with other operations—a proper
treatment must involve nonunitary symmetry groups: those
containing unitary as well as antiunitary elements. In this
case, construction of irreducible representations is compli-
cated by the fact that antiunitary elements involve com-
plex conjugation. In a group representation, combination
of two unitary elements u1 and u2 is represented by
the product of the corresponding matrices D�u1� and
D�u2� as per D�u1u2�=D�u1�D�u2�. By contrast, combination
of an antiunitary element a with a unitary element u involves
complex conjugation: D�au�=D�a�D��u�. As a result, irre-
ducible representations of a nonunitary group must include a
unitary representation and its complex conjugate on an equal
footing. Discussion of such representations �called corepre-
sentations� was given by Wigner,85 along with the analysis of
arising possibilities with the help of the Frobenius-Schur cri-
terion. Later, Herring86 studied spectral degeneracies emerg-
ing in crystals due to time-reversal symmetry and, among
other things, extended this criterion to space groups. In a
subsequent work, Dimmock and Wheeler13 generalized the
criterion further, to magnetic crystals, and pointed out the
sufficient condition �6� for the appearance of extra degenera-
cies.

The present work identifies the symmetry, that protects
the Kramers degeneracy in a Néel antiferromagnet against
transverse magnetic field, as a conspiracy between the anti-
unitary symmetry Un���Ta�, inherent to any collinear com-
mensurate antiferromagnet in a transverse field, and the crys-
tal symmetry of those special momenta at the MBZ
boundary, that are defined by Eq. �6�. Formally, the present
work is an extension of Ref. 13 since one may think of the
last two terms in Eq. �4� as of the exchange field of a ficti-
tious magnetic crystal in zero field. However, Kramers de-
generacy in a magnetic field has rather special and remark-
able experimental signatures, some of which are outlined at
the end of the section V C.

Last but not the least, Ref. 14 was an important source of
inspiration for the present work. Its authors studied the elec-
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tron eigenstates in a Néel antiferromagnet on a lattice of
square symmetry and, for this particular case, pointed out the
disappearance of g��p� at the MBZ boundary, as well as the
ensuing substantial momentum dependence of g� in the Zee-
man coupling �1�. The present paper builds on Ref. 14 by
elucidating the structure of the manifold of degenerate states
for an arbitrary crystal symmetry and for an arbitrary trans-
verse field that can be sustained by the antiferromagnet be-
fore its sublattices collapse. This is to be contrasted with the
analysis of Ref. 14, performed to the linear order in the field.
Several other aspects of Ref. 14 are discussed in Appendix
D.

C. Experimental signatures

The Kramers degeneracy at special momenta on the MBZ
boundary and the resultant Zeeman spin-orbit coupling have
a number of interesting consequences. For instance, a sub-
stantial momentum dependence of g��p� in Eq. �1� means
that, generally, the electron-spin resonance �ESR� frequency
of a carrier in the vicinity of the degeneracy manifold varies
along the quasiclassical trajectory in momentum space.

For a weakly doped antiferromagnetic insulator with a
conduction-band minimum on the degeneracy manifold, this
leads to an inherent broadening of the ESR line with doping
and, eventually, complete loss of the ESR signal. In fact, this
may well be the reason behind the long-known “ESR
silence”87 of the cuprates. Suppression of the Pauli paramag-
netism in the transverse direction with respect to staggered
magnetization is another simple consequence of vanishing
g��p�.

At the same time, a momentum dependence of g��p� al-
lows excitation of spin-resonance transitions by ac electric
rather than magnetic field88,89—a vivid effect of great prom-
ise for controlled spin manipulation, currently much sought
after in spin electronics. Its absorption matrix elements are
defined by �p of Eq. �19�. Comparison to Eq. �11� shows
that, within the weak-coupling model �8�, �p /� is of the
order of the antiferromagnetic coherence length ��

�vF

	 and
may be of the order of the lattice period or much greater. By
contrast, the ESR matrix elements are defined by the Comp-
ton length �C= �

mc �0.4 pm. Thus, the matrix elements of
electrically excited spin transitions exceed those of ESR by
about �c

e2

�F

	 �137
�F

	 , i.e., at least by 2 orders of magnitude.
Being proportional to the square of the appropriate transition
matrix element, resonance absorption due to electric excita-
tion of spin transitions exceeds that of ESR at least by 4
orders of magnitude. Last but not the least, according to Eq.
�19�, resonance absorption in this phenomenon shows a non-
trivial dependence on the orientation of the ac electric field
with respect to the crystal axes, and on the orientation of the
dc magnetic field with respect to the staggered magnetiza-
tion.

The Zeeman spin-orbit coupling may also manifest itself
in other experiments on antiferromagnetic conductors. In
particular, de Haas–van Alphen oscillations90 and magneto-
optical response may be modified. In various types of elec-
tron response, interesting effects may arise due to an extra
term vZSO in the electron velocity operator, emerging due to

a substantial momentum dependence of g��p� in Eq. �1�

vZSO = �pHZSO = − �B�pg��p��H� · �� . �20�

This term describes spin current. However, g��p� is even in
p due to inversion symmetry and thus, in equilibrium, the net
spin current must vanish. This may change if the system
were tilted, say, by electric current or otherwise, however,
the resulting effect would be proportional to the “tilt” and, in
addition to this, would be small in the measure of H� /	.

D. Conclusions

In this work, I studied the degeneracy of electron Bloch
states in a Néel antiferromagnet, subject to a transverse mag-
netic field, and described the special points in momentum
space, where the degeneracy is protected by a hidden anti-
unitary symmetry.

I discussed the simplest properties and some of the mani-
festations of the Zeeman spin-orbit coupling, arising in a
magnetic field due to this degeneracy, and outlined several
examples of interesting materials, where such a coupling
may be active. Finally, I reviewed the results and their rela-
tion to earlier work.

The degeneracy of special Bloch states in a transverse
field hinges only on the symmetry of the antiferromagnetic
state and thus holds in weakly coupled and strongly corre-
lated materials alike—provided long-range antiferromagnetic
order and well-defined electron quasiparticles are present.
Under these conditions, thermal and quantum fluctuations of
the antiferromagnetic order primarily renormalize the sublat-
tice magnetization, leaving intact the degeneracy of special
electron states in a transverse field—certainly in the leading
order in fluctuations. Detailed account of fluctuations is out-
side the scope of this paper.
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APPENDIX A: ORTHOGONALITY RELATION

This Appendix proves the relation

����O��+��O����� = ����� , �A1�

where ��� and ��� are arbitrary states, O is an arbitrary uni-
tary operator, and � is time reversal. In the main text, this
relation is used for ���=O����; in this case, when read right
to left, Eq. �A1� yields

���O���� = �����O��+�2��O����� . �A2�

Whenever ��� is an eigenvector of the linear operator �O��2

with an eigenvalue different from unity, Eq. �A2� proves or-
thogonality of ��� and O����.
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The proof of Eq. �A1� is based on the obvious relation
�C� ,C��= �� ,�� for arbitrary complex vectors � and �,
where �� ,��	�i�i

��i denotes scalar product and C is com-
plex conjugation. Hence, for an arbitrary unitary operator O,
one finds �OC� ,OC��= �� ,�� due to invariance of scalar
product under unitary transformation. Time reversal � can be
presented as a product of C and a unitary operator:85 �=VC,
thus C=V−1� and, therefore, �O�� ,O���= �� ,��. As a re-
sult, for arbitrary states ��� and ���, one finds
����O��+ � �O�����= �� ���, which indeed amounts to Eq.
�A1�.

APPENDIX B: CANTING OF THE SUBLATTICES

Canting of the two sublattices by a transverse field H�

induces a component �r
� of the magnetization density along

the field, with the periodicity of the underlying lattice,
�r+a

� �H��=�r
��H��, as shown in Fig. 3. As a result, the di-

agonal part of the Hamiltonian �8� acquires an additional
term ��p

� ·��, and Hamiltonian �8� thus takes the form

H = 
�p − ��̃p
� · �� ��� · ��

��� · �� �p+Q − ��̃p+Q
� · ��

� , �B1�

where �̃p
�	H�+�p

�.
The same choice of spin axes as in Sec. III splits the

Hamiltonian �B1� into two independent pieces

H1�2� = 
�p � 	̃p
� 	�

	� �p+Q 
 	̃p+Q
�
� . �B2�

As in Sec. III A, the momentum boost by Q maps H1 and H2
onto each other, and the spectral symmetries of Hamiltonian
�B1� coincide with those discussed in Sec. III A. Thus all of
the conclusions of Sec. III remain valid after the sublattice
canting is accounted for.

However, while the degeneracy at the special points is
protected by symmetry, the shape of the manifold of degen-
erate states may change under various perturbations. For in-
stance, sublattice canting in a transverse field modifies the
equation, describing this manifold and, for the conduction
band, turns it into

�p +
�p�p

�	�
2 + �p

2 + �p
2

= 0 �B3�

where �p	 1
2 �	̃p

�+ 	̃p+Q
� � and �p	 1

2 �	̃p
�− 	̃p+Q

� �. Since �r
�

has the real-space periodicity of the paramagnetic state, 	̃p
�

enjoys the same reciprocal space symmetry as �p. In particu-

lar, 	̃p+2Q
� = 	̃p

� and 	̃p
�= 	̃−p

� �the latter property is also pro-
tected by the Ul���� symmetry�. At the same time, �p+Q=
−�p and �p+Q=�p; thus the symmetry-dictated degeneracy
points such as p= Q

2 explicitly belong to the manifold of Eq.
�B3�, as they should.

In the limit of vanishing H�, 	̃p
� is linear in the field:

	̃p
�=H��1+�p

��, where �p
� describes microscopic transverse

susceptibility of the antiferromagnet. Now one may expand
Eq. �B3� to the linear order in the field to obtain the follow-
ing equation for the degeneracy manifold:

�p
− +

�p
+�p

�	�
2 + �p

2
= 0, �B4�

where �p

	�p
�p+Q. Compared to the equation �p=0 of

Sec. III, the sublattice canting affects the degeneracy mani-
fold already in the zeroth order in H�.

APPENDIX C: DIMENSIONALITY OF THE DEGENERACY
MANIFOLD

The dimensionality of the degeneracy manifold in a trans-
verse field is one less than that of the momentum space for
simple reasons that rely only on the symmetry of the antifer-
romagnetic state. According to Eq. �3�, zero-field Bloch
eigenstates �1�	�p� and �2�	ITa��p� form a Kramers dou-
blet at momentum p. Its splitting �E�p� in a transverse field
H� is given by

�E�p� = 2��V12�p��2 +
1

4
�V11�p� − V22�p��2, �C1�

where Vij�p�	�i��H� ·���j�. Magnetic field being uniform,
�H� ·�� commutes with ITa; it also changes sign under time
reversal. Thus, V22�p�=−V11�p�. At the same time, the off-
diagonal matrix element V12�p� vanishes identically

�p��H� · ��ITa��p� = �
q

�p��H� · ���q��q�ITa��p�

= �
q

V11�p��pq�q�ITa��p� = V11�p��p�ITa��p� 	 0,

�C2�

where insertion of unity 1=�q�q��q� was used in the first
line, uniformity of H� in the second, and the final equality
followed from Eq. �3�. Therefore,

�E�p� = 2�V11�p�� , �C3�

and, barring a special case, equation �E�p�=0 defines a
�d−1�-dimensional surface of zero g��p� in d-dimensional
momentum space. The Kramers degeneracy subset contains,
at the very least, the star of the momentum p=Q /2 �see Eq.
�6� and the subsequent discussion� and the �k ·p� expansion91

around these points shows that they are not isolated, but
rather belong to a �d−1�-dimensional manifold. The latter is
continuous, with the obvious exception of d=1.

Finally, notice that, according to Eq. �C3�, �E�p� is peri-
odic with the antiferromagnetic ordering wave vector Q,

�E�p + Q� = �E�p� , �C4�

thanks to Q being a reciprocal-lattice vector in the antiferro-
magnetic state. Therefore, properties �16� and �17� are indeed
model-independent, as opposed to hinging on an approxima-
tion of the weak-coupling model �8�.

APPENDIX D: REVISITING REF. 14

In Ref. 14, Brazovskii and Lukyanchuk stated that opera-
tor �= �n ·�� exchanges the momenta p and p+Q in Eq. �8�
and thus represents the momentum boost by the ordering
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wave vector Q in reciprocal space. In a commensurate anti-
ferromagnetic state, Q becomes a reciprocal-lattice vector
and thus � must be a symmetry of the Hamiltonian. With the
assumption of the effective Zeeman coupling �1�, this lead
the authors of Ref. 14 to the relation g��p+Q�=−g��p�
�Eq. �16� of the present work�, and to the conclusion that
g��p�=0 at the MBZ boundary. Unfortunately, while this
beautiful result is indeed correct for a lattice of square sym-
metry, several circumstances prevent one from embracing
these arguments.

Most importantly, they hinge solely on the symmetry un-
der translation by Q, put otherwise—on commensurability of
magnetic order with the crystal lattice. If correct, this would
imply that, in an arbitrary commensurate Néel antiferromag-
net, Kramers degeneracy takes place at the entire MBZ
boundary regardless of the underlying crystal symmetry. The
toy example �18� with ��1 shows that this is not at all
necessarily the case.

Indeed, for a generic crystal symmetry, the condition

g��p+Q�=−g��p� �see Ref. 14 and Eq. �16�� does not, by
itself, restrict the manifold g��p�=0 to the MBZ boundary.
However, the Kramers subset of the manifold of degenerate
states can be obtained by combining Eq. �16� with the crystal
symmetries �see Sec. III A�. For instance, combined with the
inversion symmetry g��−p�=g��p�, Eq. �16� stipulates that
g��Q /2�=0. Similarly, disappearance of g��p� at the entire
MBZ boundary for the square-symmetry case can be ob-
tained by using Eq. �16� and the point symmetries of the
square lattice. For a finite as opposed to infinitesimal field,
these results were established in Sec. II and in the first two
examples in Sec. IV.

On a more technical level, the operator � is equivalent to
Un��� and thus inverts the sign of the transverse component
of the field. Hence, in a field with nonzero transverse com-
ponent H�, � ceases to be a symmetry of the Hamiltonian,
in agreement with the first line of Table I—and thus can no
longer represent the momentum boost by Q.
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